图片 15

分布式任务队列Celery入门与进阶

一、简介

  Celery是由Python开发、简单、灵活、可靠的分布式任务队列,其本质是生产者消费者模型,生产者发送任务到消息队列,消费者负责处理任务。Celery侧重于实时操作,但对调度支持也很好,其每天可以处理数以百万计的任务。特点:

  • 简单:熟悉celery的工作流程后,配置使用简单
  • 高可用:当任务执行失败或执行过程中发生连接中断,celery会自动尝试重新执行任务
  • 快速:一个单进程的celery每分钟可处理上百万个任务
  • 灵活:几乎celery的各个组件都可以被扩展及自定制

应用场景举例:

  1.web应用:当用户在网站进行某个操作需要很长时间完成时,我们可以将这种操作交给Celery执行,直接返回给用户,等到Celery执行完成以后通知用户,大大提好网站的并发以及用户的体验感。

  2.任务场景:比如在运维场景下需要批量在几百台机器执行某些命令或者任务,此时Celery可以轻松搞定。

  3.定时任务:向定时导数据报表、定时发送通知类似场景,虽然Linux的计划任务可以帮我实现,但是非常不利于管理,而Celery可以提供管理接口和丰富的API。

1 Celery简介

Celery是异步任务队列,可以独立于主进程运行,在主进程退出后,也不影响队列中的任务执行。

任务执行异常退出,重新启动后,会继续执行队列中的其他任务,同时可以缓存停止期间接收的工作任务,这个功能依赖于消息队列(MQ、Redis)。

二、架构&工作原理

  Celery由以下三部分构成:消息中间件(Broker)、任务执行单元Worker、结果存储(Backend),如下图:

  图片 1

工作原理:

  1. 任务模块Task包含异步任务和定时任务。其中,异步任务通常在业务逻辑中被触发并发往消息队列,而定时任务由Celery
    Beat进程周期性地将任务发往消息队列;
  2. 任务执行单元Worker实时监视消息队列获取队列中的任务执行;
  3. Woker执行完任务后将结果保存在Backend中;

1.1 Celery原理

图片 2

Celery的 架构 由三部分组成,消息中间件(message
broker),任务执行单元(worker)和任务执行结果存储(task result
store)组成。

消息中间件:Celery本身不提供消息服务,但是可以方便的和第三方提供的消息中间件集成。包括,
RabbitMQRedis ,  MongoDB  (experimental), Amazon SQS
(experimental),CouchDB (experimental), SQLAlchemy (experimental),Django
ORM (experimental), IronMQ。推荐使用:RabbitMQ、Redis作为消息队列。

任务执行单元:Worker是Celery提供的任务执行的单元,worker并发的运行在分布式的系统节点中。

任务结果存储:Task result
store用来存储Worker执行的任务的结果,Celery支持以不同方式存储任务的结果,包括AMQP,
Redis,memcached, MongoDB,SQLAlchemy, Django ORM,Apache Cassandra,
IronCache

消息中间件Broker

  消息中间件Broker官方提供了很多备选方案,支持RabbitMQ、Redis、Amazon
SQS、MongoDB、Memcached 等,官方推荐RabbitMQ。

1.2Celery适用场景

异步任务处理:例如给注册用户发送短消息或者确认邮件任务。
大型任务:执行时间较长的任务,例如视频和图片处理,添加水印和转码等,需要执行任务时间长。
定时执行的任务:支持任务的定时执行和设定时间执行。例如性能压测定时执行。

任务执行单元Worker

  Worker是任务执行单元,负责从消息队列中取出任务执行,它可以启动一个或者多个,也可以启动在不同的机器节点,这就是其实现分布式的核心。

 2Celery开发环境准备

结果存储Backend

  Backend结果存储官方也提供了诸多的存储方式支持:RabbitMQ、 Redis、Memcached,SQLAlchemy,
Django ORM、Apache Cassandra、Elasticsearch。

 2.1 环境准备

软件名称

版本号

说明

Linux

Centos 6.5(64bit)

操作系统

Python

3.5.2

Django

1.10

Web框架

Celery

4.0.2

异步任务队列

Redis

2.4

消息队列

三、安装使用 

  这里我使用的redis作为消息中间件,redis安装可以参考

Celery安装: 

pip3 install celery

2.2     Celery安装

使用方法介绍:

Celery的运行依赖消息队列,使用时需要安装redis或者rabbit。

这里我们使用Redis。安装redis库:

sudo yum install redis

启动redis:

sudo service redis start

安装celery库

sudo pip install celery==4.0.2

简单使用

  目录结构:

project/
├── __init__.py  
├── config.py
└── tasks.py

各目录文件说明:

__init__.py:初始化Celery以及加载配置文件

#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# Author:wd
from celery import Celery
app = Celery('project')                                # 创建 Celery 实例
app.config_from_object('project.config')               # 加载配置模块

config.py: 
Celery相关配置文件,更多配置参考:

#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# Author:wd

BROKER_URL = 'redis://10.1.210.69:6379/0' # Broker配置,使用Redis作为消息中间件

CELERY_RESULT_BACKEND = 'redis://10.1.210.69:6379/0' # BACKEND配置,这里使用redis

CELERY_RESULT_SERIALIZER = 'json' # 结果序列化方案

CELERY_TASK_RESULT_EXPIRES = 60 * 60 * 24 # 任务过期时间

CELERY_TIMEZONE='Asia/Shanghai'   # 时区配置

CELERY_IMPORTS = (     # 指定导入的任务模块,可以指定多个
    'project.tasks',
)

tasks.py :任务定义文件

#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# Author:wd

from project import app
@app.task
def show_name(name):
    return name

启动Worker:

celery worker -A project -l debug

各个参数含义:

  worker: 代表第启动的角色是work当然还有beat等其他角色;

  -A :项目路径,这里我的目录是project

  -l:启动的日志级别,更多参数使用celery –help查看

查看日志输出,会发现我们定义的任务,以及相关配置:

图片 3

 

  虽然启动了worker,但是我们还需要通过delay或apply_async来将任务添加到worker中,这里我们通过交互式方法添加任务,并返回AsyncResult对象,通过AsyncResult对象获取结果:

图片 4

AsyncResult除了get方法用于常用获取结果方法外还提以下常用方法或属性:

  • state: 返回任务状态;
  • task_id: 返回任务id;
  • result: 返回任务结果,同get()方法;
  • ready(): 判断任务是否以及有结果,有结果为True,否则False;
  • info(): 获取任务信息,默认为结果;
  • wait(t):
    等待t秒后获取结果,若任务执行完毕,则不等待直接获取结果,若任务在执行中,则wait期间一直阻塞,直到超时报错;
  • successfu(): 判断任务是否成功,成功为True,否则为False;

3Celery单独执行任务

四、进阶使用

  对于普通的任务来说可能满足不了我们的任务需求,所以还需要了解一些进阶用法,Celery提供了诸多调度方式,例如任务编排、根据任务状态执行不同的操作、重试机制等,以下会对常用高阶用法进行讲述。

 3.1编写任务

创建task.py文件

说明:这里初始Celery实例时就加载了配置,使用的redis作为消息队列和存储任务结果。

图片 5

运行celery:

$ celery -A task worker --loglevel=info

看到下面的打印,说明celery成功运行。

图片 6

定时任务&计划任务

  Celery的提供的定时任务主要靠schedules来完成,通过beat组件周期性将任务发送给woker执行。在示例中,新建文件period_task.py,并添加任务到配置文件中:

period_task.py:

#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# Author:wd
from project import app
from celery.schedules import crontab

@app.on_after_configure.connect
def setup_periodic_tasks(sender, **kwargs):
    sender.add_periodic_task(10.0, add.s(1,3), name='1+3=') # 每10秒执行add
    sender.add_periodic_task(
        crontab(hour=16, minute=56, day_of_week=1),      #每周一下午四点五十六执行sayhai
        sayhi.s('wd'),name='say_hi'
    )



@app.task
def add(x,y):
    print(x+y)
    return x+y


@app.task
def sayhi(name):
    return 'hello %s' % name

config.py

#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# Author:wd

BROKER_URL = 'redis://10.1.210.69:6379/0' # Broker配置,使用Redis作为消息中间件

CELERY_RESULT_BACKEND = 'redis://10.1.210.69:6379/0' # BACKEND配置,这里使用redis

CELERY_RESULT_SERIALIZER = 'json' # 结果序列化方案

CELERY_TASK_RESULT_EXPIRES = 60 * 60 * 24 # 任务过期时间

CELERY_TIMEZONE='Asia/Shanghai'   # 时区配置

CELERY_IMPORTS = (     # 指定导入的任务模块,可以指定多个
    'project.tasks',
    'project.period_task', #定时任务
)

启动worker和beat:

celery worker -A project -l debug #启动work
celery beat -A  project.period_task -l  debug #启动beat,注意此时对应的文件路径

我们可以观察worker日志:

图片 7

还可以通过配置文件方式指定定时和计划任务,此时的配置文件如下:

#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# Author:wd

from project import app
from celery.schedules import crontab

BROKER_URL = 'redis://10.1.210.69:6379/0' # Broker配置,使用Redis作为消息中间件

CELERY_RESULT_BACKEND = 'redis://10.1.210.69:6379/0' # BACKEND配置,这里使用redis

CELERY_RESULT_SERIALIZER = 'json' # 结果序列化方案

CELERY_TASK_RESULT_EXPIRES = 60 * 60 * 24 # 任务过期时间

CELERY_TIMEZONE='Asia/Shanghai'   # 时区配置

CELERY_IMPORTS = (     # 指定导入的任务模块,可以指定多个
    'project.tasks',
    'project.period_task',
)

app.conf.beat_schedule = {
    'period_add_task': {    # 计划任务
        'task': 'project.period_task.add',  #任务路径
        'schedule': crontab(hour=18, minute=16, day_of_week=1),
        'args': (3, 4),
    },
'add-every-30-seconds': {          # 每10秒执行
        'task': 'project.period_task.sayhi',  #任务路径
        'schedule': 10.0,
        'args': ('wd',)
    },
}

此时的period_task.py只需要注册到woker中就行了,如下:

#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# Author:wd
from project import app

@app.task
def add(x,y):
    print(x+y)
    return x+y


@app.task
def sayhi(name):
    return 'hello %s' % name

同样启动worker和beat结果和第一种方式一样。更多详细的内容请参考:

3.2 调用任务

直接打开python交互命令行

执行下面代码:

图片 8

可以celery的窗口看到任务的执行信息

图片 9

任务执行状态监控和获取结果:

图片 10

任务绑定

  Celery可通过任务绑定到实例获取到任务的上下文,这样我们可以在任务运行时候获取到任务的状态,记录相关日志等。

修改任务中的period_task.py,如下:

#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# Author:wd
from project import app
from celery.utils.log import get_task_logger

logger = get_task_logger(__name__)
@app.task(bind=True)  # 绑定任务
def add(self,x,y):
    logger.info(self.request.__dict__)  #打印日志
    try:
        a=[]
        a[10]==1
    except Exception as e:
        raise self.retry(exc=e, countdown=5, max_retries=3) # 出错每5秒尝试一次,总共尝试3次
    return x+y

在以上代码中,通过bind参数将任务绑定,self指任务的上下文,通过self获取任务状态,同时在任务出错时进行任务重试,我们观察日志:

图片 11

3.3任务调用方法总结

有两种方法:

delay和apply_async ,delay方法是apply_async简化版。

add.delay(2, 2)
add.apply_async((2, 2))
add.apply_async((2, 2), queue='lopri')

delay方法是apply_async简化版本。

apply_async方法是可以带非常多的配置参数,包括指定队列等

Queue 指定队列名称,可以把不同任务分配到不同的队列 3.4     任务状态

每个任务有三种状态:PENDING -> STARTED -> SUCCESS

任务查询状态:res.state

来查询任务的状态

图片 12

内置钩子函数

  Celery在执行任务时候,提供了钩子方法用于在任务执行完成时候进行对应的操作,在Task源码中提供了很多状态钩子函数如:on_success(成功后执行)、on_failure(失败时候执行)、on_retry(任务重试时候执行)、after_return(任务返回时候执行),在进行使用是我们只需要重写这些方法,完成相应的操作即可。

在以下示例中,我们继续修改period_task.py,分别定义三个任务来演示任务失败、重试、任务成功后执行的操作:

#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# Author:wd
from project import app
from celery.utils.log import get_task_logger
from celery import Task

logger = get_task_logger(__name__)

class demotask(Task):

    def on_success(self, retval, task_id, args, kwargs):   # 任务成功执行
        logger.info('task id:{} , arg:{} , successful !'.format(task_id,args))



    def on_failure(self, exc, task_id, args, kwargs, einfo):  #任务失败执行
        logger.info('task id:{} , arg:{} , failed ! erros : {}' .format(task_id,args,exc))


    def on_retry(self, exc, task_id, args, kwargs, einfo):    #任务重试执行
        logger.info('task id:{} , arg:{} , retry !  einfo: {}'.format(task_id, args, exc))

@app.task(base=demotask,bind=True)
def add(self,x,y):
    try:
        a=[]
        a[10]==1
    except Exception as e:
        raise self.retry(exc=e, countdown=5, max_retries=1) # 出错每5秒尝试一次,总共尝试1次
    return x+y

@app.task(base=demotask)
def sayhi(name):
    a=[]
    a[10]==1
    return 'hi {}'.format(name)

@app.task(base=demotask)
def sum(a,b):
    return 'a+b={} '.format(a+b)

此时的配置文件config.py:

#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# Author:wd

from project import app
from celery.schedules import crontab

BROKER_URL = 'redis://10.1.210.69:6379/0' # Broker配置,使用Redis作为消息中间件

CELERY_RESULT_BACKEND = 'redis://10.1.210.69:6379/0' # BACKEND配置,这里使用redis

CELERY_RESULT_SERIALIZER = 'json' # 结果序列化方案

CELERY_TASK_RESULT_EXPIRES = 60 * 60 * 24 # 任务过期时间

CELERY_TIMEZONE='Asia/Shanghai'   # 时区配置

CELERY_IMPORTS = (     # 指定导入的任务模块,可以指定多个
    'project.tasks',
    'project.period_task',
)

app.conf.beat_schedule = {
'add': {          # 每10秒执行
        'task': 'project.period_task.add',  #任务路径
        'schedule': 10.0,
        'args': (10,12),
    },
'sayhi': {          # 每10秒执行
        'task': 'project.period_task.sayhi',  #任务路径
        'schedule': 10.0,
        'args': ('wd',),
    },
'sum': {          # 每10秒执行
        'task': 'project.period_task.sum',  #任务路径
        'schedule': 10.0,
        'args': (1,3),
    },
}

然后重启worker和beat,查看日志:

图片 13

 

4与Django集成

上面简单介绍了celery异步任务的基本方法,结合我们实际的应用,我们需要与Django一起使用,下面介绍如何与Django结合。

任务编排

  在很多情况下,一个任务需要由多个子任务或者一个任务需要很多步骤才能完成,Celery同样也能实现这样的任务,完成这类型的任务通过以下模块完成:

  • group: 并行调度任务

  • chain: 链式任务调度

  • chord:
    类似group,但分header和body2个部分,header可以是一个group任务,执行完成后调用body的任务

  • map: 映射调度,通过输入多个入参来多次调度同一个任务

  • starmap: 类似map,入参类似*args

  • chunks: 将任务按照一定数量进行分组

 

修改tasks.py:

#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# Author:wd
from project import app

@app.task
def add(x,y):
    return x+y


@app.task
def mul(x,y):
    return x*y


@app.task
def sum(data_list):
    res=0
    for i in data_list:
        res+=i
    return res

 

group: 组任务,组内每个任务并行执行

和project同级目录新建consumer.py如下:

from celery import group
from project.tasks import add,mul,sum
res = group(add.s(1,2),add.s(1,2))()  # 任务 [1+2,1+2] 
while True:
    if res.ready():
        print('res:{}'.format(res.get()))
        break

结果:

图片 14

 

chain:链式任务

链式任务中,默认上一个任务的返回结果作为参数传递给子任务

from celery import chain
from project.tasks import add,mul,sum
res = chain(add.s(1,2),add.s(3),mul.s(3))()  # 任务((1+2)+3)*3
while True:
    if res.ready():
        print('res:{}'.format(res.get()))
        break
#结果
#res:18

还可以使用|表示链式任务,上面任务也可以表示为:

res = (add.s(1,2) | add.s(3) | (mul.s(3)))()
res.get()

 

chord:任务分割,分为header和body两部分,hearder任务执行完在执行body,其中hearder返回结果作为参数传递给body

from celery import chord
from project.tasks import add,mul,sum
res = chord(header=[add.s(1,2),mul.s(3,4)],body=sum.s())()  # 任务(1+2)+(3*4)
while True:
    if res.ready():
        print('res:{}'.format(res.get()))
        break

#结果:
#res:15

 

chunks:任务分组,按照任务的个数分组

from project.tasks import add,mul,sum
res = add.chunks(zip(range(5),range(5)),4)()  # 4 代表每组的任务的个数
while True:
    if res.ready():
        print('res:{}'.format(res.get()))
        break

结果:

图片 15

 

4.1与Django集成方法

与Django集成有两种方法:

  1. Django 1.8 以上版本:与Celery 4.0版本集成
  2. Django 1.8 以下版本:与Celery3.1版本集成,使用django-celery库

今天我们介绍celery4.0 和django 1.8以上版本集成方法。

发表评论

电子邮件地址不会被公开。 必填项已用*标注